ФГБОУ ВО «Башкирский Государственный Аграрный Университет»

ИННОВАЦИОННЫЙ СТЕНД ДЛЯ ПРОВЕРКИ ФОРСУНОК СОВРЕМЕННЫХ ДИЗЕЛЬНЫХ ДВИГАТЕЛЕЙ

Автор: аспирант Низамутдинов А.И.

Научный руководитель: д-р тех. наук, профессор Неговора А.В.

ПАСПОРТ ПРОЕКТА

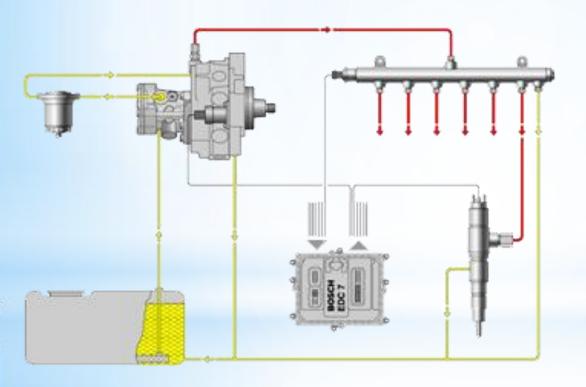
Код ГРНТИ: 68.85.83 - Техническое обслуживание, ремонт машиннотракторного парка и сельскохозяйственного инвентаря.

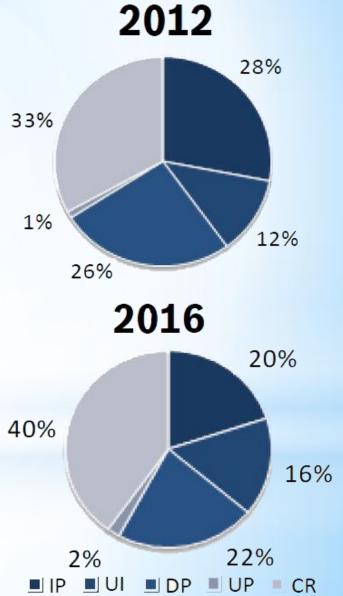
Госпрограмма: «Развитие сельского хозяйства и регулирование рынков сельскохозяйственной продукции, сырья и продовольствия в Республике Башкортостан». 6.6. Подпрограмма: «Техническая и технологическая модернизация, инновационное развитие сельскохозяйственного производства».

Проводится в рамках темы: «Совершенствование технологий и средств технического обслуживания и современной автотракторной и мобильной техники» № 01201058945.

Область применения по ОКВЭД: 50.20 - Техническое обслуживание и ремонт автотранспортных средств.

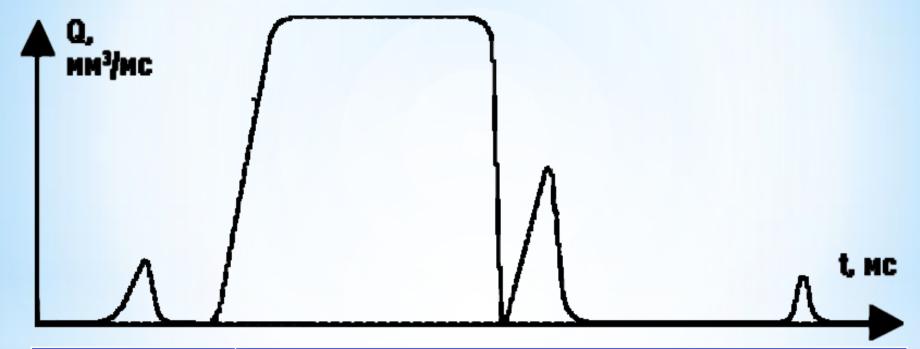
Цель проекта: Разработка стенда для испытания форсунок современных дизелей с электронным управлением.


Затраты на реализацию: 550 тыс. руб.


Инновационный продукт: Проектно-конструкторская документация.

АКТУАЛЬНОСТЬ ПРОЕКТА

Объем продаж топливных системы дизелей в России


Топливная система Common Rail

АКТУАЛЬНОСТЬ ПРОЕКТА

Характеристика впрыскивания топливоподающей системы с мультивпрыском

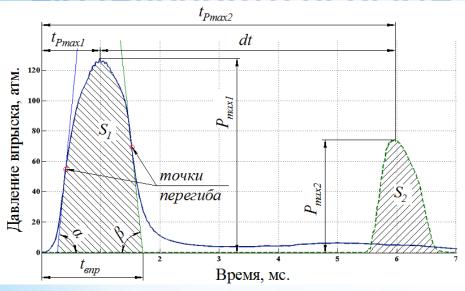
Впрыск	Назначение
Предварительный	 улучшает эффективность сгорания топлива; снижает шум процесса сгорания; снижает эмиссию вредных веществ с отработавших газов.
Основной	1) обеспечивает развитие крутящего момента двигателя.
Дополнительный	1) восстановления в некоторых вариантах нейтрализаторов Nox.

АНАЛОГИ

Moehwald CI 4000 (18 млн. руб., Германия)

Bosch EPS 815 (4,5 млн. руб., Германия)

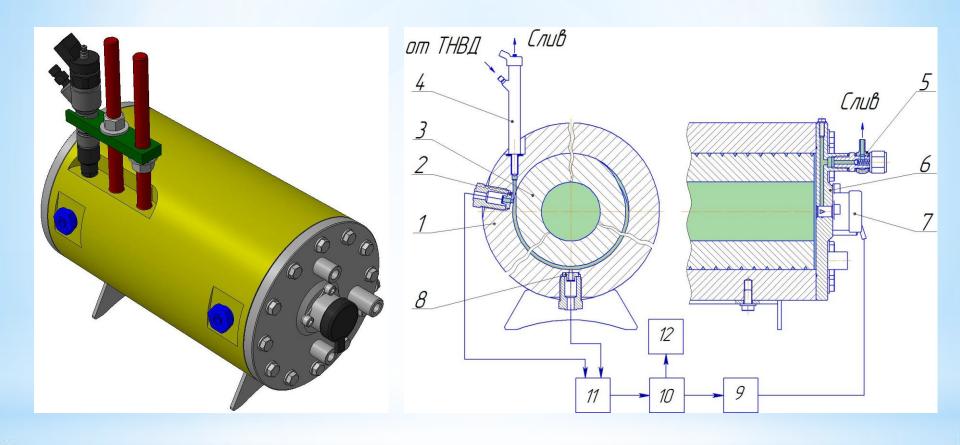
Hartridge AVM2-PC (4,3 млн. руб., Англия)


C-MAX 3000 (3,5 млн. руб., Турция)

	Показатели					
Параметры	Moehwald CI 4000	Bosch EPS 815	Hartridge AVM2-PC	C-MAX 3000	NTS 300	Наш стенд
Габаритные размеры, мм	2260x 2080x2690	2260x 1565x660	1000x 1700x 670	950x 1500x600	1200x 700x1400	600x 700x1600
Напряжение питания, В	380	380	380	220 - 230	220 - 380	380
Диапазон регулирования давления, МПа	0 - 180	0 - 180	0 - 180	0-160	0-160	0-180
Способ измерения	без мензурочная	без мензурочная	мензурочная	мензурочная	мензурочная	без мензурочная
Рабочий интервал сигнала открытия форсунки, мкс	100 - 4000	100 - 4000	100 - 3000	100 - 4000	100 - 3000	100 - 4000
Количество одновременно проверяемых форсунок, шт.	8	6	12	1	1	1

NTS 300 (950 тыс. руб., КНР)

АКТУАЛЬНОСТЬ ПРОЕКТА


Усредненная характеристика впрыска с основными показателями:

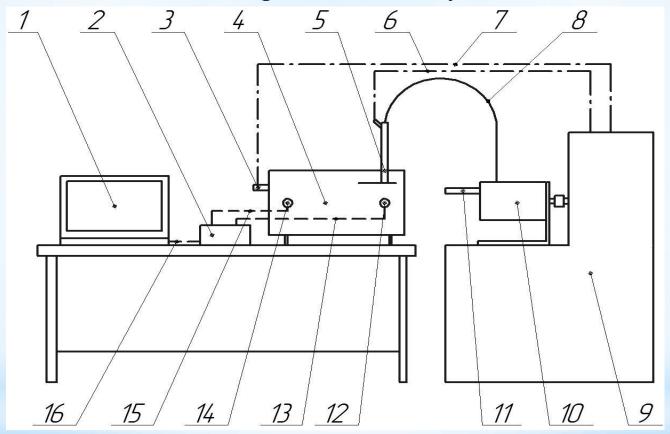
Стенд с мензурочной системой измерения

Предложенное устройство	Аналогичные стенды
Площадь под кривой на первом датчике давления, (S1)	Объемная подача
Максимальное давление впрыска на первом датчике давления, (Ртах1)	Объемный слив
Продолжительность впрыскивания, (tвпр)	
Время прохождения волны давления от 1 до 2 датчиков давления, (dt)	
Угол наклона переднего фронта, (α)	
Угол наклона заднего фронта, (β)	
Продолжительность от начала впрыска и до максимального значения на первом датчике давления, (tPmax1)	

УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИКИ ВПРЫСКИВАНИЯ

- 1 внешняя обойма (корпус); 2, 8 датчик давления; 3 внутренняя обойма; 4 испытываемая форсунка; 5 редукционный клапан; 6 фланец;
- 7 электромагнитный клапан; 9 широтно-импульсный модулятор; 10 электронный блок управления; 11 аналогово-цифровой преобразователь; 12 монитор.

ЛАБОРАТОРНЫЕ ИСПЫТАНИЯ


Общий вид экспериментальной установки

- 1 персональный компьютер, 2 АЦП/ЦАП Е-154 фирмы L-card,
- 3 экспериментальное устройство, 4 форсунка, 5 микрометр, 6 ТНВД, 7– стенд КИ-921МТ.

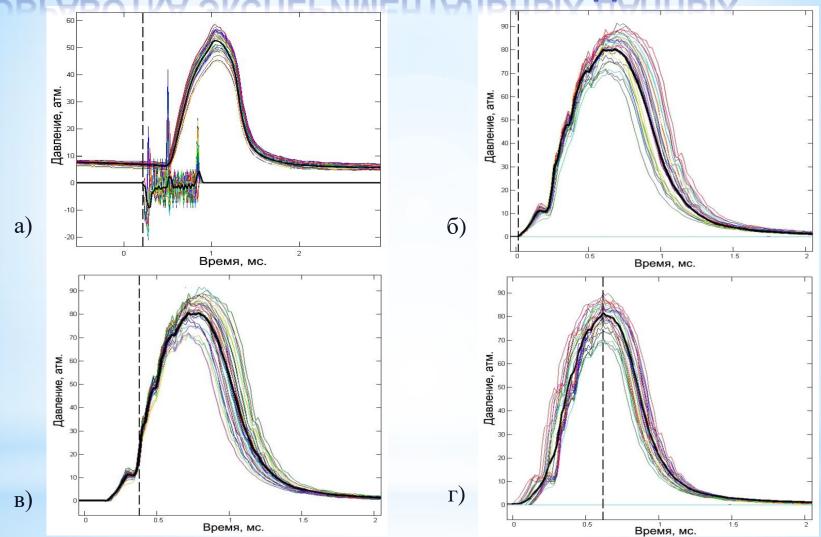

ЛАБОРАТОРНЫЕ ИСПЫТАНИЯ

Схема экспериментальной установки

1 — компьютер; 2 — АЦП/ЦАП Е-154; 3 — перепускной клапан; 4 — экспериментальное устройство; 5 — форсунка; 6, 7 — сливные шланги редукционного клапана и форсунки соответственно; 8 — линия высокого давления; 9 — стенд КИ-921МТ; 10 — ТНВД; 11 — микрометр; 12, 14 — первый и второй датчик давления; 13, 15 — кабели измерения давления; 16 — USB кабель.

ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Наложение файлограмм 30-ти цикловых подач топлива и усредненных характеристик, полученных по методу: а) по началу управляющего сигнала (для форсунок CR); б) по началу нарастания давления топлива (для механических форсунок);

в) по точке перегиба переднего фронта; г) по максимальному значению давления.

ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Критерием для оценки методов по определению стабильной точки является наименьшее значение среднеквадратического отклонения:

$$\sigma = \left(\frac{1}{n} \times \sum_{i=1}^{n} (x_i - \bar{x})^2\right)^{\frac{1}{2}}$$

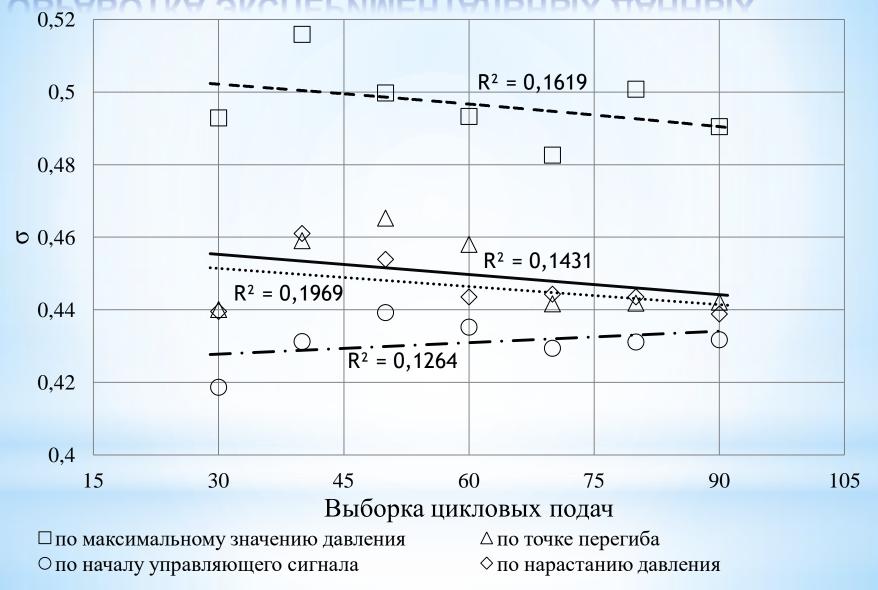
где n — объём выборки;

хі — і-й элемент выборки;

х— среднее арифметическое выборки.

Экспериментальные данные в виде матрица в программной среде Matlab

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$


Функция std используется для нахождения среднеквадратического отклонения

$$\sigma_m = std(A, 1, 2) = \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \dots \\ \sigma_n \end{pmatrix}$$

где 1 — возвращает среднеквадратическое отклонение квадратный корень из несмещенной дисперсии;

2 – возвращает стандартное отклонение по строкам для матрицы А.

ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Зависимость значения среднеквадратического отклонения от объема выборки цикловых подач при разных методах определения стабильной точки.

ТЕХНОЛОГИЯ ДИАГНОСТИРОВАНИЯ ЭЛЕКТРОГИДРОУПРАВЛЯЕМЫХ ФОРСУНОК С ИСПОЛЬЗОВАНИЕМ ПРЕДЛОЖЕННОГО УСТРОЙСТВА

Влияние выхода из допуска структурных параметров форсунки на её диагностические показатели (номинальный режим работы)

	Наиболее вероятные неисправности													
Диагностический Параметр	Усилие пружины распылителя	Гидроплотность распылителя	Эфф. проход. сечение распыл.	Герметич. Запорного конуса	Ход якоря	Воздушный зазор	Эфф. прох. сечен. шелевого фильтра	Гидроплотность по торц. поверх. распылителя	Ход иглы распылителя	Усилие пружины якоря	Диаметр жиклера над- плунж. пространства	Гидроплотность направляющей плунжера	Утечки по уплотни- тельной шайбе	Утечки по запорному клапану
Q_{max}	_	↑	↑	-	↑	↑	↑	↑	↑	_	_	↑	_	↑
α	↑	\uparrow	↑	↑	↑	↑	\uparrow	↑	_	_	_	_	_	\uparrow
В	↑	-	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	_	\uparrow	\uparrow	\uparrow	_	_
G _ц	_	↑	↑	_	↑	↑	↑	_	↑	_	_	_	_	\uparrow
Q _{упр}	↑	-	-	↑	↑	↑	\uparrow	↑	↑	-	\uparrow	-	\uparrow	↑
Δt	↑	_	_	↑	_	↑	\uparrow	-	-	\uparrow	\uparrow	_	↑	-
t _{впр}	_	\uparrow	↑	↑	↑	-	\uparrow	_	↑	_	_	_	_	↑

Диагностические параметры: Qmax — максимальный расход через сопла распылителя, α — крутизна переднего фронта, β — крутизна заднего фронта, Gц — величина цикловой подачи, Qyпр — расход на управление, Δt — период задержки впрыскивания, t впр — продолжительность впрыскивания.

ПЛАН РЕАЛИЗАЦИИ ПРОЕКТА

Наименование мероприятий	Денежные средства, тыс. руб.
1. Совершенствование математической модели и оптимизация конструктивно-режимных параметров устройства.	40
2. Разработка конструкторской документации и изготовление опытного образца устройства.	70
3. Испытание, анализ и корректировка конструкции устройства.	50
4. Формирование структуры стенда и разработка систем подачи топлива, автоматизации, фиксации и отображения данных.	70
5. Разработка электронного девайса и написание программного обеспечения.	60
6. Изготовление опытного образца стенда.	130
7. Проведение экспериментальных исследований стенда в лабораторных и производственных условиях.	80
8. Анализ полученных данных, корректировка методики испытания, уточнение технологических и конструктивных параметров.	50
9. Коммерциализация полученных результатов интеллектуальной деятельности (стенд и технология испытания форсунок).	-
Итого	550

КОНКУРЕНТНЫЕ ПРЕИМУЩЕСТВА

- *Возможность качественной фиксации характеристики единичных цикловых подач топлива.
- *Увеличение количества диагностируемых показателей от 2 до 7.
- *Повышение точности измерений за счет учета температуры и вязкости топлива.
- *Повышенная надежность устройства за счет отсутствия подвижных деталей.
- *Новая методика усреднения большого массива данных полученных с датчиков.
- *Возможность снижения стоимости стенда за счет импортозамещения деталей.

РЫНОК

Потребителями данного стенда будут являться организации различных форм собственности, дилерские автоцентры, автосервисы, мастерские, индивидуальные предприятия.

Опрос в г. Уфа показал, что 10 сервисов хотят приобрести нашу разработку. В России более 600 тыс. автосервисов, если даже 10% занимаются ремонтом дизелей, то 6 тыс. потенциальных потребителей. При доле рынке в 2 % это более 100 стендов в год. Доход предприятия составит 25 млн. руб., а доход автора от аренды патента 2 млн. руб. в год.

г. Уфа	ИП Кулдаев Е.В.	г. Стерлитамак
ООО Башдизель	ИП Бурханов И.М.	Мастерская Common Rail
ООО Технодизель	ИП Саитов Р.Х.	ИП Гайнуллин Г.М.
ООО Авто Плюс		
ООО Интеко	г. Оренбург	г. Челябинск
ООО Уфимский	ООО ДЕЗЕЛИСТ	ООО Ремонтдизельсервис
ООО СиандартАМ	ООО Доктор Дизель	Дизель-тест ИП Согрин М.А.
Мастерская Мастер-Дизель	Мастерская ТНВД	ООО Технодизель и т.д.

РИСКИ ПРОЕКТА

Наименование риска	Вероятность	Мероприятия по устранению		
Нехватка денежных средств для финансирования проекта	Средняя	Участие в программах инновационных проектов, поиск инвесторов		
Отказ от Common Rail и переход на новый тип топливной системы	Низкая	Адаптация к новому типу топливной системы		
Не стабильность получаемых кривых	Низкая	Доведение конструктивных параметров до требуемого уровня		

НАША КОМАНДА

- 1. Низамутдинов Алмаз Ильдарович автор проекта, аспирант кафедры «Автомобили и машинно-тракторные комплексы».
- **2. Неговора Андрей Владимирович** научный руководитель, д.т.н., профессор кафедры «Автомобили и машиннотракторные комплексы».
- 3. Гусев Дмитрий Александрович инженер по электронной части.
- **4. Гиззатуллин Рамиль Флюрович** инженер по механической части.

ИНТЕЛЛЕКТУАЛЬНАЯ СОБСТВЕННОСТЬ

Патент RU 2578019 C2 «Устройство для определения характеристики впрыскивания топлива топливоподающей аппаратурой дизелей».

Заявка на регистрацию программы для ЭВМ «Программа для определения характеристики впрыскивания топлива топливоподающей аппаратурой дизелей».

ДИПЛОМЫ И ГРАМОТЫ

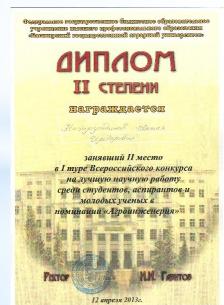
МежВУЗовский Союз

Шаг за шагом

диплом

участника Деловых игр «Проектная деятельность» выдан

Низамутдинову Алмазу Ильдаровичу


аспиронту кафедры тракторов и автомобилей федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Башкирский государственный аграрный университет»

(научный руководитель: д-р техн. наук. проф. Неговора А.В.) за активное участие с проектом «Разработка стенда для фиксации характеристики впрыскивания форсунок»

uniouni@mai.ru

http://vk.com/mezhvuzovskysoyuz

СПАСИБО ЗА ВНИМАНИЕ!